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ABSTRACT

Due to its wide applications, aerial image classification,
which is also called semantic segmentation of aerial im-
agery, attracts increasing research interest in recent years.
Until now, deep semantic segmentation network (DSSN) has
been widely adopted to address aerial image classification
and achieves tremendous success. However, the superior
performance of DSSN highly depends on massive targeted
data with labels. When DSSN is trained on data from the
source domain but tested on data from the target domain, the
performance of DSSN is often very limited due to the data
shift between source and target domains. To alleviate the
disadvantage influence of data shift, this paper proposes a
domain adaptation approach via unsupervised style transfer
to cope with cross-domain aerial image classification. More
specifically, this paper innovatively recommends DualGAN
to conduct unsupervised style transfer for mapping aerial im-
ages in the source domain to the target domain. The mapped
aerial imagery with labels is adopted to train DSSN, which is
further used to classify aerial imagery in the target domain.
To verify the validity of the presented approach, we give two
cross-domain experimental settings including: (I) variation
of geographic location; (II) variation of both geographic lo-
cation and imaging mode. Extensive experiments under two
typical cross-domain settings show that our proposed method
can obviously outperform the state-of-the-art methods.

Index Terms— Cross-domain aerial image classification,
domain adaptation, unsupervised style transfer, DualGAN.

1. INTRODUCTION

Due to its wide usage in disaster rescue, crop assessment, in-
telligent traffic, and so forth, aerial image classification at-
tracts more and more research interest. More specifically,
aerial image classification works for assigning a land-cover
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type from a predefined set (e.g., building, car, tree, and so
on) to each pixel in the image. Although it has been widely
exploited, aerial image classification is still an open problem
and needs much more exploration around how to decrease the
supervison dependency of labeled data.

As is well known, deep semantic segmentation network
(DSSN) has achieved tremendous success in aerial image
classification under the basic premise that a targeted aerial
image dataset with accurate labels is available. However,
if DSSN is trained on labeled images from dataset A (i.e.,
source domain), but is directly deployed to classify the im-
ages from dataset B (i.e., target domain), the classification
performance often dramatically decreases due to the domain
shift between source and target domains. One naive solu-
tion is to annotate the images in the target domain and train
DSSN on it. In reality, collecting a large-scale aerial image
dataset with pixel-wise annotations is time-consuming and
expensive. For example, pixel-wise annotation of the nat-
ural Cityscapes image will take 90 minutes on average [1].
Compared with natural images, aerial images present more
complex structure. So it can be imagined that the labeling
process is much more difficult than that of natural images.
One potential solution is to train a deep model with the ex-
isting labeled data from the source domain, and then try to
transfer the model to the data from the target domain.

In the field of computer vision, there have been many
methods for cross-domain image classification. Tasi et al. [2]
proposed an adversarial learning method for domain adap-
tation in the context of semantic segmentation. They adopt
adversarial learning in the output space and improve the per-
formance. Yonghao et al. [3] utilized the self-ensembling
attention network to extract attention-aware features for do-
main adaptation. On the surface, aerial image classification
is similar to natural image classification. Actually, compared
with natural image classification, aerial image classifica-
tion has to address many further challenges because of the
dense structure and arbitrary orientation of geospatial objects.
Hence, domain adaptation for aerial image classification de-
serves much more special exploration.

In the remote sensing community, the pioneers in [4] pro-
posed an unsupervised domain adaptation method to address
cross-domain aerial image classification where CycleGAN is

1385978-1-7281-6374-1/20/$31.00 ©2020 IEEE IGARSS 2020

IG
AR

SS
 2

02
0 

- 2
02

0 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-7
28

1-
63

74
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
39

08
4.

20
20

.9
32

36
71

Authorized licensed use limited to: Wuhan University. Downloaded on December 04,2023 at 02:47:01 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Flowchart of the proposed UST-DG.

utilized in the domain adaptation process. To address cross-
domain aerial image classification, we propose an unsuper-
vised style transfer approach via DualGAN (UST-DG). In our
proposed UST-DG, DualGAN is innovatively recommended
to conduct unsupervised style stransfer due to its transfer su-
periority compared with CycleGAN. More specifically, we
firstly deplopy DualGAN [5] to conduct unsupervised style
transfer from the source aerial image dataset to the target
aerial image dataset. Then, train a DSSN on the transferred
arial image dataset with labels. The trained DSSN using the
transferred images can fluently understand the images from
the target aerial image dataset.

To verify the validity of the presented approach, we give
two typical cross-domain experimental settings including: (I)
variation of geographic location; (II) variation of both geo-
graphic location and imaging mode. Extensive experiments
show that our proposed UST-DG can outperform the state-of-
the-art methods, remarkably.

2. METHODOLOGY

In this section, we describe the problem setting and show the
framework of our UST-DG algorithm. Specifically, we intro-
duce the DualGAN which is adopted to perform unsupervised
style transfer, and the DeepLab v3 plus [6] which is a typical
DSSN. After training the DSSN with the transferred dataset,
the DSSN can be applicable to work on the target dataset.

In the unsupervised domain adaptation task, a well anno-
tated dataset S from the source domain and unlabeled dataset
T from target domain are given. The proposed method aims
to use the paired source domain images to train a model and
then apply it to predict the label for the target dataset. The
unsupervised image to image style transfer procedure done by
DualGAN is designed to make images of the source domain
mimic the style of the target domain, which will reduce the
domain shift between the source images and target images.
The flowchart of the framework is depicted in Fig. 1. Our
proposed algorithm consists of three steps. The first step is
to train a DualGAN network and transfer the source domain

images to the style of the target domain, whose output is a
transferred dataset conserves the structures representation of
the source dataset but simulates the global style of the target
dataset. The second step is to train a DSSN with the translated
dataset associated with the source labels. This step helps the
model learn the patterns of the target dataset and converge to
a better generalization ability of image structure on the target
dataset. Finally, the DSSN is capable of working on the target
dataset.

2.1. Unsupervised style transfer via DualGAN

DualGAN employs two GANs, the primal GAN {GA, DA}
and a dual GAN {GB , DB}, which map a sample from the
source (target) domain to the target (source) domain and gen-
erate samples that are indistinguishable from samples in the
target (source) domain, respectively.

As shown in Fig. 2, image s ∈ S is converted to domain
T by GA. Then, DA is used to measure how well the trans-
lation GA(s, z) fits in T , where z is random noise to perform
data augmentation and so is z′. GA(s, z) is then converted
back to domain S by GB , which outputs GB(GA(s, z), z

′) as
the reconstruction of s. Similarly, t ∈ T is translated to S as
GB(t, z

′) and then reconstructed as GA(GB(t, z
′), z). The

discriminator DA is trained with t as positive samples and
GA(s, z) as negative examples, which means it give samples
from t a high score but gives samples from GA(s, z) a low
score. Meanwhile,DB is trained in the same way. Generators
GA and GB are optimized to emulate “fake” outputs to con-
fuse the corresponding discriminators DA and DB , as well as
to minimize the reconstruction losses ||s−GA(GB(t, z

′), z)||
and ||t−GB(GA(s, z), z

′)||.
The corresponding loss functions used in DA and DB are

defined as:

ldA(s, t) = DA(GA(s, z))−DA(t) (1)

ldB(s, t) = DB(GB(t, z
′))−DB(s) (2)

where s ∈ S and t ∈ T .
The same loss function is used for both generatorsGA and

GB as they share the same objective.

lg(s, t) = λS ||s−GA(GB(t, z
′), z)||

+ λT ||t−GB(GA(s, z), z
′)||

−DB(GB(t, z
′))−DA(GA(s, z)) (3)

where s ∈ S, t ∈ T and λS , λT are two constant parameters
depending on the specific task.

2.2. Learning a deep semantic segmentation network

Based on the aforementioned unsupervised DualGAN in sec-
tion 2.1, the images in the source aerial image dataset are au-
tomatically transferred to approximate the style of the target
aerial image dataset, which benefits minimizing the influence
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Fig. 2: Architecture of DualGAN for unsupervised style transfer.

of data shift between different domains. In addition, we use
the transferred images with labels to train the DSSN. In our
implementation, DSSN is implemented by DeepLab v3 plus
as DeepLab v3 plus is the state-of-the-art semantic segmen-
tation network and often achieves the best performance in the
natural semantic segmentation field.

2.3. Classifying the images from the target domain

The trained DSSN, in section 2.2, is utilized to classify im-
ages from the target aerial image dataset. As the trained data
(i.e., the transferred images with labels) is highly similar to
the data from the target domain, the trained DSSN can can
fluently understand the images from the target image dataset.
More experiments can refer to the experimental section.

3. EXPERIMENTAL RESULTS

3.1. Experimental settings and evaluation metrics

To verify our methodology, we conduct experiments by Pots-
dam and Vaihingen datasets which belong to the ISPRS 2D
semantic segmentation benchmark dataset [7]. All images in
both datasets are provided with their semantic labels, includ-
ing six classes of ground objects: building, tree, car, imper-
vious surfaces, low vegetation, and clutter/background. The
Potsdam dataset contain 3 different imaging modes: IRRG:
3 channels (IR-R-G), RGB: 3 channels (R-G-B), RGBIR: 4
channels (R-G-B-IR), we use the first two kinds. The Vaihin-
gen dataset contains only one imaging mode: IRRG: 3 chan-
nels (IR-R-G). To lift the computational efficiency, we crop
the images and their corresponding labels into patches with a
size of 512 × 512 and feed them into the network.

In details, we give two cross-domain experimental set-
tings including: (I) variation of geographic location, shown
as Fig. 3(a); (II) variation of both geographic location and
imaging mode, shown as Fig. 3(b). Similar to [2, 3, 4], we
use accuracy, precision, recall, F1 − score and mIoU to
evaluate the performance of these models.

(a) the cross-domain transfer task from Potsdam IR-R-G to Vaihingen IR-R-G.

(b) the cross-domain transfer task from Potsdam R-G-B to Vaihingen IR-R-G.

Fig. 3: Two different cross-domain classification tasks.

3.2. Comparison results with the state-of-the-art methods

3.2.1. Experimental results under the variation of geo-
graphic location

To confirm the effectiveness of our proposed UST-DG on do-
main shift mainly caused by region variation, we use Pots-
dam IR-R-G dataset as source domain and Vaihingen IR-R-G
dataset serves as target domain. The metrics of cross-domain
classification results are shown in Table 1, where methods a to
c are based on BiSeNet [8] framework and methods e to f are
based on DeepLab framework. The visualization of the clas-
sification results is shown in Fig. 4. Through experiments, we
can find that domain shift has a great impact on the accuracy
of the model. It is shown that our proposed method obtains
higher performance than other methods.

3.2.2. Experimental results under the variation of both geo-
graphic location and imaging mode

Furthermore, Potsdam R-G-B dataset serves as source do-
main and Vaihingen IR-R-G dataset serves as target domain
in order to evaluate the effectiveness of our method on do-
main shift caused by variation of both geographic location
and imaging mode. The metrics of cross-domain classifica-
tion results are shown in Table 2. The visualization of the
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Table 1: The cross-domain classification results from Potsdam IR-R-G to Vaihingen IR-R-G.

Method Method id Accuracy Precision Recall F1-score mIoU

BiSeNet without adaptation a 0.518 0.501 0.454 0.438 0.245
UDA in [4] b 0.326 0.177 0.179 0.155 0.092

BiSeNet + DualGAN c 0.548 0.485 0.475 0.445 0.279
DeepLab v3 plus without adaptation d 0.404 0.473 0.510 0.491 0.253

SEANet in [3] e 0.612 0.552 0.562 0.557 0.377
Our proposed UST-DG f 0.661 0.579 0.635 0.606 0.416

Table 2: The cross-domain classification results from Potsdam R-G-B to Vaihingen IR-R-G.

Method Method id Accuracy Precision Recall F1-score mIoU

BiSeNet without adaptation a 0.415 0.311 0.325 0.287 0.167
UDA in [4] b 0.456 0.448 0.429 0.401 0.261

BiSeNet + DualGAN c 0.543 0.474 0.474 0.439 0.283
DeepLab v3 plus without adaptation d 0.367 0.495 0.410 0.449 0.245

SEANet in [3] e 0.481 0.428 0.517 0.468 0.278
Our proposed UST-DG f 0.602 0.504 0.513 0.509 0.359

Fig. 4: Samples of classification results from Potsdam
IR-R-G to Vaihingen IR-R-G.

Fig. 5: Samples of classification results from Potsdam
R-G-B to Vaihingen IR-R-G.

classification results is shown in Fig. 5. The experimental re-
sults are similar to the above, our proposed UST-DG gains a
higher performance, which further proves the effectiveness of
our proposed model.

To sum up, our proposed UST-DG has a good perfor-
mance in dealing with both the domain shift mainly caused
by the region variation and caused by the imaging mode vari-
ation. Our method shows strong robustness and great gener-
alization capability.

4. CONCLUSION

In this work, we innovatively apply DualGAN to do style
transfer with source dataset to the target dataset for unsu-
pervised domain adaptation. Our proposed UST-DG method
does not affect the ability of the segmentation model to clas-
sify classes not affected by domain shift. In addition, it costs
very little because it does not require annotating data or other
manual work. To verify our proposed approach, we give two

cross-domain experimental settings including: (I) variation of
geographic location; (II) variation of both geographic location
and imaging mode. Extensive experiments under two typical
cross-domain settings show that our proposed method can ob-
viously outperform the state-of-the-art methods.
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