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ABSTRACT

Due to its wide applications, aerial image semantic segmen-
tation attracts increasing research interest in recent years. As
well known, deep semantic segmentation network (DSSN)
has been widely used to deal with aerial image segmenta-
tion and achieves spectacular success. However, when apply-
ing the DSSN trained with the labeled aerial images (i.e., the
source domain) to predict the aerial images acquired with dif-
ferent acquisition conditions (i.e., the target domain), the per-
formance often dramatically degrades. To alleviate the nega-
tive influence of cross-domain data shift, this paper proposes a
domain adaptation approach to deal with cross-domain aerial
image semantic segmentation. More precisely, this paper pro-
poses a novel rotation consistency-preserved generative ad-
versarial network (RCP-GAN) to carry out domain adaptation
for mapping aerial images in the source domain to the target
domain. Furthermore, the mapped aerial imageries with la-
bels are used to train DSSN, which is further used to classify
aerial imagery in the target domain. To verify the validity
of the presented approach, we give two cross-domain exper-
imental settings including: (I) variation of geographic loca-
tion; (II) variation of both geographic location and imaging
mode. Extensive experiments under two typical cross-domain
settings show that our proposed method can effectively ad-
dress the domain shift problem and outperform the state-of-
the-art methods with a large margin.

Index Terms— Rotation consistency-preserved gener-
ative adversarial network (RCP-GAN), cross-domain aerial
image semantic segmentation, domain adaptation, unsuper-
vised style transfer.

1. INTRODUCTION

Compared with satellite images, aerial images often provide
sufficient information about the ground objects. Pixel-level
classification (i.e., semantic segmentation) of aerial images
is a fundamental research task in the remote sensing com-
munity that has great significance in infrastructure planning,
landcover classification, and urban object detection.

This work was supported by the National Natural Science Foundation
of China under grants 42030102 and 41971284. (Corresponding authors:
Yansheng Li and Yongjun Zhang)

As well known, deep semantic segmentation network
(DSSN) has achieved spectacular breakthroughs in aerial
image semantic segmentation [1]. However, its superior per-
formance highly depends on the abundant labeled samples.
As aerial images present massive complex structures, it is
time-consuming and laborious to annotate pixel-level labels
for oversized aerial images. To alleviate the annotation labor,
one may borrow some similar data (not the target data itself)
with labels to train deep network. However, when applying
the deep learning model trained with the labeled aerial images
from the source domain to predict the aerial images acquired
with different acquisition conditions (i.e., the target domain),
the performance often critically degrade. This phenomenon
is called domain shift that is caused by the distribution gap
between different aerial image domains. Distribution gaps
between different aerial datasets are mainly due to the diverse
data acquisition conditions including imaging sensors, varied
geospatial regions, ground sampling distances and arbitrary
shooting angles, the images often present many distinct char-
acteristics such as variety of imaging mode, multi-scale of
objects and variety of color saturation. Varied data acquired
regions may result in significant distinctions in architectural
style and urban layout between data sets. Thus, a reasonable
solution is to perform style transfer, i.e., to transfer the im-
ages from the source domain to the style of the target domain.
Then, the transferred images with the corresponding labels of
images from the source domain are used to train the DSSN.
As a consequence, this strategy naturally reduces the effect
of domain shift.

The existing style transfer algorithms are mainly con-
structed based on generative adversarial networks (GANs)
and can be roughly divided into two categories: methods that
require paired images [2, 3] and methods that do not require
paired images [4, 5]. For the former, the strictly paired im-
ages are taken as one kind of supervision constraint. For
instance, conditional GAN [3], which requires the pairs of
corresponding images, is first proposed to address image-
to-image translation. But this kind of framework does not
harmonize with the goal of generalizing cross-domain aerial
image semantic segmentation. The latter methods are not
conditioned on the paired images, which is conducive to pro-
moting the cross-domain aerial image semantic segmentation
task. However, these methods do not consider the distinct
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Fig. 1: Our proposed RCP-GAN.

characteristics in aerial images as aforementioned. With this
consideration, we propose rotation consistency-preserved
generative adversarial network (RCP-GAN) to carry out un-
supervised style transfer of aerial images for cross-domain
aerial image semantic segmentation. The main contributions
of this paper include the following two aspects:

• By fully exploiting the unsupervised constraints, this
paper proposes a novel RCP-GAN model for unsuper-
vised style transfer of aerial images to mitigate the ef-
fect of domain shift.

• As a flexible framework, the proposed RCP-GAN can
be easily extended to address kinds of cross-domain
aerial image semantic segmentation cases including: (I)
variation of geographic location; (II) variation of both
geographic location and imaging mode.

The rest of this paper is organized as follows. Section 2
depicts the methodology. Section 3 specifically gives the ex-
perimental results. Section 4 gives a conclusion of this paper.

2. METHODOLOGY

In this section, we first describe the problem to be coped with.
Next, we show our proposed RCP-GAN model which is an
unsupervised way to do style transfer. Then, DSSN is trained
with the transferred image dataset.

To facilitate clarifying the methodology, we first formu-
late the involved data. Let S denote the source dataset and T
denote the target dataset. The proposed method aims to use
the paired source domain images to train a model and then
apply it to predict the label for the target dataset. The un-
supervised image to image style transfer procedure done by

RCP-GAN is designed to make images of the source domain
mimic the style of the target domain.

2.1. RCP-GAN for unsupervised style transfer of aerial
images

Similarly, our proposed RCP-GAN employs two GANs, the
primal GAN {GA, DA} and a dual GAN {GB , DB}. As
shown in Fig. 1, image s ∈ S is converted to domain T
by GA. Then, DA is used to measure how well the transla-
tion GA(s, z) fits in T , where z is random noise to perform
data augmentation and so is z′. GA(s, z) is then converted
back to domain S by GB , which outputs GB(GA(s, z), z

′) as
the reconstruction of s. Similarly, t ∈ T is translated to S as
GB(t, z

′) and then reconstructed as GA(GB(t, z
′), z). The

discriminator DA is trained with t as positive samples and
GA(s, z) as negative examples, which means it give samples
from t a high score but gives samples from GA(s, z) a low
score. Meanwhile,DB is trained in the same way. Generators
GA and GB are optimized to emulate “fake” outputs to con-
fuse the corresponding discriminators DA and DB , as well as
to minimize the reconstruction losses ||s−GA(GB(t, z

′), z)||
and ||t−GB(GA(s, z), z

′)||.
The corresponding loss functions used in DA and DB are

defined as:

ldA(s, t) = DA(GA(s, z))−DA(t) (1)

ldB(s, t) = DB(GB(t, z
′))−DB(s) (2)

where s ∈ S and t ∈ T .
Considering the distinct characteristic of arbitrary shoot-

ing angles in aerial images, the rotation consistency constraint
is introduced into our GAN model. Specifically, rotation
transformation ϕ (random rotation of 90 degrees, 180 de-
grees, 270 degrees) is performed on the image s and t, and
then we obtain s′ = ϕ(s) and t′ = ϕ(t). s′ is fed into
GA and the output GA(s

′, z) is obtained. To compute the
pixel-level consistency of two outputs, we have to perform
the inverse transform to put every pixel to the original loca-
tion. We denote inverse transforms of the random rotation as
ϕ−1. Thus, we can obtain the inverse transformed outputs
GA (s′, z) = ϕ−1 (GA (s′, z)), and the rotation consistency
loss can be computed. The consistency loss term often uses
the mean squared error, which encourages the pixel-level
consistency of the output under different random rotation
transforms. The loss function can be described as Eq. (3).
The rotation consistency loss of unsupervised style transfer
from target domain to source domain is similar to this.

lS→T
con = `MSE

(
GA (s′, z) , GA (s′, z)

)
(3)

where s ∈ S and t ∈ T . `MSE represents mean squared error
loss.
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So, the total loss function can be defined as Eq. (4).

lg(s, t) = λS ||s−GA(GB(t, z
′), z)||

+ λT ||t−GB(GA(s, z), z
′)||

+ lS→T
con + lT→S

con

−DB(GB(t, z
′))−DA(GA(s, z)) (4)

where s ∈ S, t ∈ T and λS , λT are two constant parameters
depending on the specific task.

2.2. Cross-domain aerial image semantic segmentation
with RCP-GAN

After transferring the source dataset to style of the target
dataset by RCP-GAN in section 2.1, we use the transferred
dataset with origin labels to train a DSSN, where we employ
Deeplab v3+ in our implementation. Finally, the DSSN can
work well on the target domain to do semantic segmentation.

3. EXPERIMENTAL RESULTS

3.1. Experimental settings and evaluation metrics

To verify our methodology, we conduct experiments by Pots-
dam and Vaihingen datasets which belong to the ISPRS 2D
semantic segmentation benchmark dataset. All images in both
datasets are provided with their semantic labels, including six
classes of ground objects: building, tree, car, impervious sur-
faces, low vegetation, and clutter/background. The Potsdam
dataset contain 3 different imaging modes: IRRG: 3 channels
(IR-R-G), RGB: 3 channels (R-G-B), RGBIR: 4 channels (R-
G-B-IR), we use the first two kinds. The Vaihingen dataset
contains only one imaging mode: IRRG: 3 channels (IR-R-
G). To lift the computational efficiency, we crop the images
and their corresponding labels into patches with a size of 512
× 512 and feed them into the network.

In details, we give two cross-domain experimental set-
tings including: (I) variation of geographic location; (II) vari-
ation of both geographic location and imaging mode. We use
accuracy, precision, recall, F1−score and mIoU to eval-
uate the performance of these models.

3.2. Implementation details

Our proposed RCP-GAN is constructed with the same net-
work architecture for GA and GB . The generator is config-
ured with equal number of down sampling and up sampling
layers. In addition, we configure the generator with skip con-
nections between mirrored down sampling and up sampling
layers, making it a U-shaped net. For discriminators, we em-
ploy the Patch-GAN architecture. The patch size at which
the discriminator operates is fixed at 70×70, and the image
resolutions were mostly 256×256, same as pix2pix [3].

(a) (b)
Fig. 2: Unsupervised style transfer results. (a) From Potsdam
IR-R-G to Vaihingen IR-R-G. (b) From Potsdam R-G-B to
Vaihingen IR-R-G.

This work is implemented by Pytorch and trained on a
single Nvidia TITAN RTX GPU with 24GB RAM. As an op-
timizer for the training, we used RMSprop optimizer with the
initial learning rate set to 0.00005 and weight decay for RM-
SProp optimizer is set to 0.1. In our implementation, the batch
size and epoch are set to 4 and 45, respectively. As for the
DSSN, we use Deeplab v3+ and adopt the default settings.

3.3. Comparison results with the state-of-the-art methods

3.3.1. Experimental results under the variation of geo-
graphic location

To confirm the effectiveness of our proposed RCP-GAN for
aerial image unsupervised style transfer, we use Potsdam IR-
R-G dataset as source domain and Vaihingen IR-R-G dataset
serves as target domain. In addition, we compared RCP-GAN
with DualGAN. The unsupervised style transfer results are
shown in Fig. 2(a), where (i) are source images, (ii) and
(iii) are transferred via DualGAN and our RCP-GAN, respec-
tively. Further, we carry out the compariosn experiments with
the relative cross-domain aerial images semantic segmenta-
tion methods. The Metrics of cross-domain semantic segmen-
tation results are shown in Table 1. The visualization of the
semantic segmentation results is shown in Fig. 3. Through
experiments, we can find that domain shift has a great impact
on the accuracy of the model. It is shown that our proposed
method obtains higher performance than other methods.

3.3.2. Experimental results under the variation of both geo-
graphic location and imaging mode

Furthermore, Potsdam R-G-B dataset serves as source do-
main and Vaihingen IR-R-G dataset serves as target domain
in order to evaluate the effectiveness of our method on do-
main shift caused by variation of both geographic location
and imaging mode. Fig. 2(b) shows the unsupervised style
transfer results. The Metrics of cross-domain semantic seg-
mentation results are shown in Table 2. The visualization of
the semantic segmentation results is shown in Fig. 4. The ex-
perimental results are similar to the above, our method gains
a higher performance, which further proves the effectiveness
of our proposed model.
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Table 1: The cross-domain classification results from Potsdam IR-R-G to Vaihingen IR-R-G.
Method Method id Accuracy Precision Recall F1-score mIoU

BiSeNet without adaptation a 0.518 0.501 0.454 0.438 0.245
Deeplab v3+ without adaptation b 0.404 0.473 0.510 0.491 0.253

SEANet [6] c 0.612 0.552 0.562 0.557 0.377
AdaptSegNet [7] d 0.596 0.552 0.534 0.523 0.352

UDA in [8] e 0.326 0.177 0.179 0.155 0.092
Deeplab v3+ with DualGAN f 0.661 0.579 0.635 0.606 0.416

Our RCP-GAN g 0.720 0.612 0.719 0.661 0.482

Table 2: The cross-domain classification results from Potsdam R-G-B to Vaihingen IR-R-G.
Method Method id Accuracy Precision Recall F1-score mIoU

BiSeNet without adaptation a 0.415 0.311 0.325 0.287 0.167
Deeplab v3+ without adaptation b 0.367 0.495 0.410 0.449 0.245

SEANet [6] c 0.481 0.428 0.517 0.468 0.278
AdaptSegNet [7] d 0.594 0.524 0.460 0.490 0.321

UDA in [8] e 0.456 0.448 0.429 0.401 0.261
Deeplab v3+ with DualGAN f 0.602 0.504 0.513 0.509 0.359

Our RCP-GAN g 0.683 0.538 0.586 0.561 0.407

To sum up, our proposed RCP-GAN has a good perfor-
mance in dealing with both the domain shift mainly caused
by the region variation and caused by the imaging mode vari-
ation. Our method shows strong robustness and great gener-
alization capability.

Fig. 3: Samples of semantic segmentation results on Potsdam
IR-R-G to Vaihingen IR-R-G.

Fig. 4: Samples of semantic segmentation results on Potsdam
R-G-B to Vaihingen IR-R-G.

4. CONCLUSION

To solve the negative influence domain shift in cross-domain
semantic segmentation, this paper proposes a novel RCP-
GAN to carry out unsupervised style transfer for mapping
aerial images in the source domain to the target domain.
Then, the mapped aerial imageries with labels are used to
train DSSN, which is further used to classify aerial imagery
in the target domain. Our proposed method can effectively
address the domain shift problem in cross-domain semantic
segmentation. In addition, it costs very little because it does

not require extra annotating data or other manual work. To
verify our proposed approach, we give two cross-domain ex-
perimental settings including: (I) variation of geographic lo-
cation; (II) variation of both geographic location and imaging
mode. Extensive experiments under two typical cross-domain
settings show that our proposed method can well address the
domain shift problem in cross-domain aerial image semantic
segmentation. In future work, we will improve our GAN
model by considering more characteristics of aerial images.
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